## The intuition behind inverse probability weighting in causal inference

Removing confounding can be done via a variety methods including IP-weighting. This post provides a summary of the intuition behind IP-weighting.

In my previous post, I introduced causal inference as a field interested in estimating the unobservable causal effects of a treatment: i.e. the difference between some measured outcome when the individual is assigned a treatment and the same outcome when the individual is not assigned the treatment. If you’d like to quickly brush up on your causal inference, the fundamental issue associated with making causal inferences, and in particular, the troubles that arise in the presence of confounding, I suggest you read my previous post on this topic.